Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
The Korean Journal of Physiology and Pharmacology ; : 675-686, 2017.
Article in English | WPRIM | ID: wpr-727946

ABSTRACT

Orthostatic hypotension (OH) is associated with symptoms including headache, dizziness, and syncope. The incidence of OH increases with age. Attenuation of the vestibulosympathetic reflex (VSR) is also associated with an increased incidence of OH. In order to understand the pathophysiology of OH, we investigated the physiological characteristics of the VSR in the disorder. We applied sodium nitroprusside (SNP) to conscious rats with sinoaortic denervation in order to induce hypotension. Expression of pERK in the intermediolateral cell column (IMC) of the T4~7 thoracic spinal regions, blood epinephrine levels, and blood pressure were evaluated following the administration of glutamate and/or SNP. SNP-induced hypotension led to increased pERK expression in the medial vestibular nucleus (MVN), rostral ventrolateral medullary nucleus (RVLM) and the IMC, as well as increased blood epinephrine levels. We co-administered either a glutamate receptor agonist or a glutamate receptor antagonist to the MVN or the RVLM. The administration of the glutamate receptor agonists, AMPA or NMDA, to the MVN or RVLM led to elevated blood pressure, increased pERK expression in the IMC, and increased blood epinephrine levels. Administration of the glutamate receptor antagonists, CNQX or MK801, to the MVN or RVLM attenuated the increased pERK expression and blood epinephrine levels caused by SNP-induced hypotension. These results suggest that two components of the pathway which maintains blood pressure are involved in the VSR induced by SNP. These are the neurogenic control of blood pressure via the RVLM and the humoral control of blood pressure via epinephrine release from the adrenal medulla.


Subject(s)
Animals , Rats , 6-Cyano-7-nitroquinoxaline-2,3-dione , Adrenal Medulla , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid , Blood Pressure , Denervation , Dizocilpine Maleate , Dizziness , Epinephrine , Excitatory Amino Acid Antagonists , Glutamic Acid , Headache , Hypotension , Hypotension, Orthostatic , Incidence , N-Methylaspartate , Nitroprusside , Receptors, Glutamate , Reflex , Spinal Cord Lateral Horn , Syncope , Vestibular Nuclei
2.
The Korean Journal of Physiology and Pharmacology ; : 427-434, 2015.
Article in English | WPRIM | ID: wpr-727354

ABSTRACT

Significant evidence supports the role of the vestibular system in the regulation of blood pressure during postural movements. In the present study, the role of the vestibulo-spino-adrenal (VSA) axis in the modulation of blood pressure via the vestibulosympathetic reflex was clarified by immunohistochemical and enzyme immunoassay methods in conscious rats with sinoaortic denervation. Expression of c-Fos protein in the intermediolateral cell column of the middle thoracic spinal regions and blood epinephrine levels were investigated, following microinjection of glutamate receptor agonists or antagonists into the medial vestibular nucleus (MVN) and/or sodium nitroprusside (SNP)-induced hypotension. Both microinjection of glutamate receptor agonists (NMDA and AMPA) into the MVN or rostral ventrolateral medullary nucleus (RVLM) and SNP-induced hypotension led to increased number of c-Fos positive neurons in the intermediolateral cell column of the middle thoracic spinal regions and increased blood epinephrine levels. Pretreatment with microinjection of glutamate receptor antagonists (MK-801 and CNQX) into the MVN or RVLM prevented the increased number of c-Fos positive neurons resulting from SNP-induced hypotension, and reversed the increased blood epinephrine levels. These results indicate that the VSA axis may be a key component of the pathway used by the vestibulosympathetic reflex to maintain blood pressure during postural movements.


Subject(s)
Animals , Rats , Axis, Cervical Vertebra , Blood Pressure , Denervation , Epinephrine , Excitatory Amino Acid Antagonists , Glutamic Acid , Hypotension , Immunoenzyme Techniques , Microinjections , Neurons , Nitroprusside , Receptors, Glutamate , Reflex , Vestibular Nuclei , Natural Resources
3.
Journal of the Korean Balance Society ; : 110-116, 2015.
Article in Korean | WPRIM | ID: wpr-761199

ABSTRACT

OBJECTIVE: The vestibular system contributes control of blood pressure during postural changes through the vestibulosympathetic reflex. In the vestibulosympathetic reflex, afferent signals from the peripheral vestibular receptors are transmitted to the vestibular nuclei, rostral ventrolateral medullary nuclei, and then to the intermediolateral cell column of the thoracolumbar spinal cord. Physiological characteristics of the vestibulosympathetic reflex in terms of neurogenic and humoral control of blood pressure were investigated in this study. METHODS: Conscious rats with sinoaortic denervation were used for removal of baroreceptors in reflex control of blood pressure, and hypotension was induced by intravenous infusion of sodium nitroprusside (SNP). Expression of c-Fos protein was measured in the medial vestibular nuclei (MVN), rostral vestrolateral medullary nuclei(RVLM), and intermediolateral cell column (IMC) in T4-7, and levels of blood epinephrine were measured following SNP-induced hypotension. RESULTS: SNP-induced hypotension significantly increased expression of c-Fos protein in the MVN, RVLM, and IMC, also significantly increased level of blood epinephrine compared to normotensive control animals. CONCLUSION: These results suggest that the vestibulosympathetic reflex regulates blood pressure through neurogenic control including MVN, RVLM, and IMC, also through humoral control including epinephrine secretion by the adrenal medulla following SNP-induced hypotension. The physiological characteristics of the reflex may contribute to basic treatment of impairment of blood pressure control during postural changes.


Subject(s)
Animals , Rats , Adrenal Medulla , Blood Pressure , Denervation , Epinephrine , Hypotension , Infusions, Intravenous , Nitroprusside , Pressoreceptors , Reflex , Spinal Cord , Vestibular Nuclei
4.
Journal of the Korean Balance Society ; : 131-137, 2012.
Article in English | WPRIM | ID: wpr-761125

ABSTRACT

BACKGROUND AND OBJECTIVES: Acute hypotension induces expression of c-Fos protein and phosphorylated extracellular signal-regulated kinase (pERK), and glutamate release in the vestibular nuclei. Expression of c-Fos protein and pERK is mediated by the excitatory neurotransmitter, glutamate. In this study, the signaling pathway of glutamate in the vestibular nuclei following acute hypotension was investigated. MATERIALS AND METHODS: Expression of metabotropic glutamate receptors (mGluRs) was measured by Western blotting in the medial vestibular nucleus following acute hypotension in rats. RESULTS: Expression of pGluR1 Ser831, a subtype of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, peaked at 30 minutes after acute hypotension insult, and expression of pNR2B, a subtype of N-methyl-D-aspartate (NMDA) receptors, peaked at 2 hours after acute hypotension insult. Acute hypotension induced expression of Homer1a and group I mGluR in the medial vestibular nucleus. Expression of mGluR1 and mGluR5 peaked at 6 hours following acute hypotension insults. CONCLUSION: These results suggest that afferent signals from the peripheral vestibular receptors, resulting from acute hypotension insult, are transmitted through group I mGluRs as well as AMPA and NMDA receptors in the vestibular system.


Subject(s)
Animals , Rats , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid , Blotting, Western , Glutamic Acid , Hypotension , N-Methylaspartate , Neurotransmitter Agents , Phosphotransferases , Receptors, Metabotropic Glutamate , Receptors, N-Methyl-D-Aspartate , Vestibular Nuclei
5.
Journal of the Korean Balance Society ; : 92-99, 2011.
Article in Korean | WPRIM | ID: wpr-761094

ABSTRACT

BACKGROUND AND OBJECTIVES: Force sensitive resistors (FSR) were used to measure the body sway to galvanic vestibular stimulation (GVS), and compared with the response obtained from force platform in normal subjects. MATERIALS AND METHODS: Bipolar galvanic stimulation was applied to the bilateral mastoid process with intensity of 0.5-1.5 mA and duration of 1 sec in 3 different head positions of forward, rightward, and leftward. RESULTS: Elevation of anterior pressure curve and depression of posterior pressure curve resulting from forward body sway were recorded in both feet by FSR. Forward body sway induced forward deviation of the center of pressure in force platform. Elevation of pressure curve in left foot and depression of the curve in right foot resulting from leftward body sway were recorded by FSR. Leftward body sway induced left deviation of the center of pressure in force platform. Orientation of the body sway induced by GVS was directed towards the anode side in the head facing forwards. Leftward and backward body sway resulting from cathodal stimulation on left mastoid process in leftward rotation of the head position and leftward and forward body sway resulting from cathodal stimulation on left mastoid process in rightward rotation of the head position were recorded by both FSR and force platform. Reaction time of GVS did not show any significant difference between FSR and force platform. CONCLUSION: These results indicate that FSR could be used to evaluate the vestibulospinal reflex to GVS.


Subject(s)
Depression , Electrodes , Foot , Head , Mastoid , Orientation , Reaction Time , Reflex
SELECTION OF CITATIONS
SEARCH DETAIL